If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10b^2-51b+56=0
a = 10; b = -51; c = +56;
Δ = b2-4ac
Δ = -512-4·10·56
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-51)-19}{2*10}=\frac{32}{20} =1+3/5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-51)+19}{2*10}=\frac{70}{20} =3+1/2 $
| 0=40x+x^2-225 | | 81-j=54 | | 7k^2-35=0 | | 900-z=182 | | 3(x+7)-2x=12 | | u+1/8=3 | | 2s+s+6=39 | | 7(6+4m)=154 | | 28=2x(8+5) | | 63/r=7 | | 11q-4q-5q=14 | | a^2-28a+196=0 | | -13=5a-(-12) | | 2n-n+3n=20 | | 5(x-2)=2(x-3) | | 20u-11u-7u+u-2u=17 | | 2r−7=−1 | | x/2+10=10 | | 0.4(2x+1/2)=(0.2x+(-2)-4 | | 6/x+2=18/12 | | 3(-1)+1x=0 | | 10z-9z+3z-z=12 | | -8+6x=46 | | -(5x-5)-(8x-5)+7=-3(x-1)-(13x+4)+3 | | 12r-9r=15 | | 2x2+4x-6=0,x= | | 13=17+x | | 9y-13=-10+12y | | 8x(3.8+13.2)=-6 | | 5v^2-29v-42=0 | | 9+x=3-4x9+x+3-4x | | 3(x+2)+4=22 |